转载:Redis 的 KEYS 命令引起 RDS 数据库雪崩

最近的互联网线上事故发生比较频繁,9月19日网上爆料出顺丰近期发生了一起线上删库事件,在这里就不介绍了。

在这里讲述一下最近发生在我公司的事故,以及如何避免,并且如何处理优化。 该宕机的直接原因是使用 Redis 的 keys * 命令引起的,一共造成了某个服务化项目的两次宕机。

间接原因还有很多,技术跟不上业务的发展,由每日百万量到千万级是一个大的跨进,公司对于系统优化的处理优先级不高,技术开发人手的短缺。
第一次宕机

2018年9月13日的某个点,公司某服务化项目的 RDS 实例连接飙升,CPU 升到 100%,拒绝了其他应用的所有请求服务。

整个过程如下:

阅读更多

详解用 MiniFramework 计算程序运行时间的方法

我们在项目调优过程中,通常会对代码的运行时间进行统计,以便了解程序运行的性能和效率,这些统计结果将作为代码优化时的重要指标,帮助开发者有针对性的进行调优工作。

MiniFramework 在 1.3.0 版本中,新增了 Debug 类,其中包含有时间统计功能的若干方法,可以非常便捷地帮助开发者实现上述统计需求,下面我们来通过示例代码介绍具体实现方法。

首先,假设我们有一个名为 Index 的 Controller,并且其中包含有一个名为 index 的 Action(MiniFramework下载包中已经包含),我们将代码写在这个 Action 中,如下:

阅读更多

PHP 开源框架 MiniFramework 发布 1.4.0 版

MiniFramework 是一款遵循 Apache2 开源协议发布的,支持 MVC 和 RESTful 的超轻量级 PHP 开发框架。MiniFramework 能够帮助开发者用最小的学习成本快速构建 Web 应用,在满足开发者最基础的分层开发、数据库和缓存访问等少量功能基础上,做到尽可能精简,以帮助您的应用基于框架高效运行。

MiniFramework于2018年9月13日发布1.4.0版本,变化有:

* 新增Log类,用于以日志的形式记录代码运行报错和开发者自定义的调试信息。
* 新增常量LOG_ON,用于控制日志功能的开启和关闭(生产环境建议关闭)。
* 新增常量LOG_LEVEL,用于定义可被写入日志的错误等级。
* 新增常量LOG_PATH,用于定义日志存储路径。
* 新增Debug类的varType方法,用于判断变量类型。
* 改进优化异常控制相关功能。

阅读更多

Golang 开发 Socket 通信时常用的 TCP 封包和解包协议

在开发 Socket 通信时,由于 TCP 协议的特性,在网络状况不佳的情况下,数据传输过程中经常会出现半包或粘包。为解决这一问题,通常我们需要自定义一个通信协议,增加一个 HEADER 部分,并在其中对数据包的长度进行声明,下面分享一段封包和解包的示例代码,可用于 Golang 开发 Socket 时处理数据传输,具体代码如下:

package protocol
 
import (
    "bytes"
    "encoding/binary"
)
 
const (
    TCP_HEADER     = "TCPHEADER"
    TCP_HEADER_LEN = 9
    TCP_DATA_LEN   = 4
)
 
// 封包
func Enpack(msg []byte) []byte {
    return append(append([]byte(TCP_HEADER), IntToBytes(len(msg))...), msg...)
}
 
// 解包
func Depack(buffer []byte, readerChannel chan []byte) []byte {
    length := len(buffer)
 
    var i int
    for i = 0; i < length; i++ {
        if length < i + TCP_HEADER_LEN + TCP_DATA_LEN {
            break
        }
        if string(buffer[i:i + TCP_HEADER_LEN]) == TCP_HEADER {
            msgLen := BytesToInt(buffer[i + TCP_HEADER_LEN : i + TCP_HEADER_LEN + TCP_DATA_LEN])
            if length < i + TCP_HEADER_LEN + TCP_DATA_LEN + msgLen {
                break
            }
            data := buffer[i + TCP_HEADER_LEN + TCP_DATA_LEN : i + TCP_HEADER_LEN + TCP_DATA_LEN + msgLen]
            readerChannel <- data
 
            i += TCP_HEADER_LEN + TCP_DATA_LEN + msgLen - 1
        }
    }
 
    if i == length {
        return make([]byte, 0)
    }
    
    return buffer[i:]
}
 
// 整形转换成字节
func IntToBytes(n int) []byte {
	x := int32(n)
    bytesBuffer := bytes.NewBuffer([]byte{})
    binary.Write(bytesBuffer, binary.BigEndian, x)
    
    return bytesBuffer.Bytes()
}
 
// 字节转换成整形
func BytesToInt(b []byte) int {
    bytesBuffer := bytes.NewBuffer(b)
    var x int32
    binary.Read(bytesBuffer, binary.BigEndian, &x)
    
    return int(x)
}

 

深入研究 PHP 的 SESSION 阻塞问题

最近在一个基于 Web 的 IM 项目中,我采用异步向服务器发起请求拉取最新的聊天内容,服务器端通过 PHP 处理拉取请求,拉取过程是用 10 次循环查询数据库是否有最新的聊天内容。如发现新内容,则立即向浏览器输出,并结束掉本次请求的进程。在这 10 次的循环中,每次查询数据库后,均通过 Sleep 函数让进程暂停 1 秒,那么这个 PHP 进程可能会在服务器端保持 10 秒。

在测试过程中,我发现当这个拉取请求运行期间,其他向服务器端 PHP 发起的请求,均受到影响,响应变的非常慢。

经过一系列的排查,问题始终得不到解决,但当把代码中涉及到 SESSION 的部分全部跳过时,情况发生了变化,所有 PHP 进程都恢复正常的响应速度了。由此,联想到问题可能出在了 SESSION 阻塞机制上了。

阅读更多

部署 Keepalived 实现 MySQL 双主高可用架构

1.部署 MySQL 双主(Master – Master)集群

参考我的博文:《MySQL 双主 Master to Master 架构部署方法》

地址:http://www.sunbloger.com/2018/08/16/604.html

假设已经在 IP 为 192.168.0.1 和 192.168.0.2 的两台主机上部署好了 MySQL 双主集群,接下来我们进行 Keepalived 的部署。

阅读更多

冒泡排序法 for Golang 写法

代码如下:

// main
package main

import (
	"fmt"
)

func main() {
	val := []int{7, 3, 8, 1, 0, 2, 5, 9, 6, 4}
	fmt.Println(val)

	// 冒泡排序
	for i := 0; i < len(val)-1; i++ {
		for j := i + 1; j < len(val); j++ {
			if val[i] > val[j] {
				val[i], val[j] = val[j], val[i]
			}
		}
	}

	fmt.Println(val)
}

阳光部落原创,更多内容请访问http://www.sunbloger.com/

MySQL 双主 Master to Master 架构部署方法

为了演示部署过程,我通过 VMware 创建了两台主机,分别为 TestServer1(192.168.0.1) 和 TestServer2(192.168.0.2)。两台主机均安装了 CentOS 6.9。

MySQL 通过源码进行编译,我选择的是 mysql-5.6.41.tar.gz 这个版本的源码包。

编译安装过程如下:

创建 MySQL 的用户组和用户

# groupadd mysql
# useradd -g mysql mysql

阅读更多

Linux进程间通信的六种主要手段

1.管道(Pipe)及有名管道(named pipe)

管道可用于具有亲缘关系进程间的通信,有名管道克服了管道没有名字的限制,因此,除具有管道所具有的功能外,它还允许无亲缘关系进程间的通信;

2.信号(Signal)

信号是比较复杂的通信方式,用于通知接受进程有某种事件生,除了用于进程间通信外,进程还可以发送信号给进程本身;linux除了支持Unix早期 信号语义函数sigal外,还支持语义符合Posix.1标准的信号函数sigaction(实际上, 该函数是基于BSD的,BSD为了实现可靠信号机制,又能够统一对外接口,sigaction函数重新实现了signal函数);

3.报文(Message)队列(消息队列)

消息队列是消息的链接表,包括Posix消息队列system V消息队列。有足够权限的进程可以向队列中添加消息,被赋予读权限的进程则可以读走队列中的消息。消息队列克服了信号承载信息量少,管道只能承载无格式字节流以及缓冲区大小受限等缺点。

阅读更多